Minimizing crosstalk in three-axial induction magnetometers.
نویسندگان
چکیده
A model for crosstalk in three-axial induction magnetometers has been developed theoretically and verified experimentally. The effect of crosstalk on the magnetometer accuracy has been analyzed. It has been found that the inevitable crosstalk in the transverse coils has two components: one due to the applied magnetic flux and the other due to the secondary flux produced by the electric current in the longitudinal coil. The first component has a constant magnitude. The phase of the second component, relative to the first one, is nearly 180° at low frequencies, 90° at resonance, and 0° at high frequencies. Its magnitude approaches zero at low frequencies, has the maximum at resonance, and then drops off by a factor equal to the coils' quality factor and approaches the first component value. As a result, the crosstalk due to the applied flux is dominant at low frequencies. At a frequency just below the resonance, the crosstalk is very low, if no magnetic feedback is applied. Just above the resonance, the crosstalk reaches the maximum because of the rapid increase in the secondary flux. Applying a strong enough magnetic feedback nearly flattens the crosstalk amplitude response. However, an undesirable effect of the feedback is that it significantly increases the minimum crosstalk value. A very low crosstalk at a single frequency can be beneficial for magnetometers tuned to a narrow frequency band. It can also be beneficial for wide-band magnetometers to measure their mechanical orthogonality with a minimum effect of crosstalk.
منابع مشابه
Elimination of flux-transformer crosstalk in multichannel SQUID magnetometers
Multichannel SQUID magnetometers are being developed for signal-field mapping in biomagnetic experiments. A problem that becomes more serious as the number of channels is increased is the crosstalk caused by the mutual inductances between the individual sensing coils. A simple and effective method for eliminating this crosstalk is presented in this Paper. The method is based on a rearrangement ...
متن کاملThe Search Coil Magnetometer for THEMIS
THEMIS instruments incorporate a tri-axial Search Coil Magnetometer (SCM) designed to measure the magnetic components of waves associated with substorm breakup and expansion. The three search coil antennas cover the same frequency bandwidth, from 0.1 Hz to 4 kHz, in the ULF/ELF frequency range. They extend, with appropriate Noise Equivalent Magnetic Induction (NEMI) and sufficient overlap, the ...
متن کاملMagnetic Calibration of Three-Axis Strapdown Magnetometers for Applications in Mems Attitude-Heading Reference Systems
In a strapdown magnetic compass, heading angle is estimated using the Earth's magnetic field measured by Three-Axis Magnetometers (TAM). However, due to several inevitable errors in the magnetic system, such as sensitivity errors, non-orthogonal and misalignment errors, hard iron and soft iron errors, measurement noises and local magnetic fields, there are large error between the magnetometers'...
متن کاملCrosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression
Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, imm...
متن کاملReal Time Calibration of Strap-down Three-Axis-Magnetometer for Attitude Estimation
Three-axis-magnetometers (TAMs) are widely utilized as a key component of attitude determination subsystems and as such are considered the corner stone of navigation for low Earth orbiting (LEO) space systems. Precise geomagnetic-based navigation demands accurate calibration of the magnetometers. In this regard, a complete online calibration process of TAM is developed in the current research t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Review of scientific instruments
دوره 81 12 شماره
صفحات -
تاریخ انتشار 2010